

Advanced course on

HIGH RESOLUTION ELECTRONIC MEASUREMENTS IN NANO-BIO SCIENCE

INSTRUMENTATION FOR NOISE MEASUREMENTS Noise as Signal

Marco Sampietro

Outline of the lesson

We have been FIGHTING all along the course AGAINST NOISE !!

Noise is <u>universal</u> and <u>unavoidable</u> (thermal noise, shot noise, 1/f noise, ...)

In electronic devices & circuits it is important to measure the noise ...

... as it sets the minimum detectable signal.

Can NOISE be OUR FRIEND ?

Use it as a macroscopic «echo» of the microphysics ruling the device properties

How to MEASURE very low NOISE?

What is the noise of a resistor?

For **any resistor** (dissipative system) in thermal equilibrium :

The thermal noise is commonly used also in *non-equilibrium* conditions

Why?

Inelastic scattering, by dissipating the energy that electrons gain from the field and randomizing the momentum, reduces the electron average energy to that of the lattice, and therefore the noise corresponds to thermal-Nyquist noise at any bias.

Why we do not see any granularity of the charge (shot noise)?

 $S_i=2qI [A^2/Hz]$

The prediction of the G-R theory

G.Gomila, L.Reggiani, *Phys. Rev.* B62 (2000), p.8068

Departure from the thermal noise:

$$I_{1} = \left(\frac{L}{L_{D}}\right)^{4/3} I_{R} \qquad I_{R} = \frac{V_{th}}{R}$$

(L>L_{D}; per L\rightarrow I₁=I_R)

Shot noise:

$$I_{2} = \left(\frac{L}{L_{D}}\right)^{2} I_{R} \qquad (\tau_{T} = \tau_{d})$$

(L>L_D; per LD \rightarrow I₂=I_R)

A macroscopic resistor might show shot noise !

Key parameters

Thermal noise in resistors ("standard" case)

transit time $\gg \tau_d$ (dielectric relaxation time)

Time long enough to shield the carrier \rightarrow electrodes "do not see" the single carrier but a "collective" effect

$L >> L_D$

The carrier is shielded → electrodes "do not see" the single carrier

Shot noise in resistors

transit time $<< \tau_d$ (dielectric relaxation time)

The material has no time to shield the carrier \rightarrow electrodes "see" the single charge

(mean time btwn collisions) $\tau_m \ll$ transit time

Shot noise

Charge carriers are independent. \rightarrow electrodes "**see**" the single carrier.

Fluctuation of the number of carrier due to random scattering Independent of the injection of carriers: it is the random motion in the material that gives the shot noise (carriers thermalize but do not correlate)

Examples

 "Standard" resistor: R=100kΩ
 L=1mm

• Heavily doped silicon resistor:

n= 10¹⁷ cm⁻³ L=1mm

L=1µm

 L_{D} =400nm

(transition at 850 V/cm)

 L_D =12.5nm Thermal-shot transition at *E*= 9 *kV/mm* (8*V*/µm)

Shot noise at *E*= 1.6 *kV/cm* (160*mV/μm*)

Lightly doped silicon resistor:
 n= 10¹⁴ cm⁻³

Experimental validation on CdTe

CdTe crystal (ohmic contact in gold):

- Wide band gap (1.47eV)
- Lightly doped ($p \cong 9.10^7 \text{ cm}^{-3}|_{T=300\text{K}}$
- $\square \rho = 1.8 G\Omega \cdot cm (L/L_D = 4.4)$
- Mobility is electric field independent up to tens of kV/cm

Exponential dependence on the temperature ($n = n_0 \exp(-E/kT)$)

Shot noise of a resistor (at room temperature)

323

7 x 10⁸

11.8

G. Ferrari et al., APL, 83, 2450 (2003) G. Gomila et al., PRL, 92, 226601 (2004)

How to measure very low noise?

Noise power of input amplifier <u>adds</u> to the DUT signal power and therefore sets the minimum detectable "DUT NOISE" signal.

This apply frequency by frequency

A standard spectrum analyzer

Typical white noise power of best commercial analyzers is $1nV/\sqrt{Hz}$. (10⁻¹⁸ V²/Hz)

An example

An example

No chance to measure smaller noises ?

A two channels scheme

Comparison btwn the two instruments

NO signal applied (NO input DUT)

An example

M.Sampietro et al., Review of Sci. Instrum., Vol.70, n.5, 2520-2525 (1999)

Sensitivity of the instrument

Note that $\sigma_{SDUT} [V^2/Hz]$ or $[A^2/Hz]$ gives the amount of noise <u>power</u> obtained with T_m and/or Δf . The noise level in $[V/\sqrt{Hz}]$ or $[A/\sqrt{Hz}]$ is obtained as $\sqrt{\sigma_{SDUT}}$.

NOT possible with a standard lock-in

Sensitivity limit vs measuring time

Limits imposed by residual correlations (see additional material)

Example of current measurement

FIG. 7. Frequency spectrum of the current noise produced by a resistor of 10 G Ω . Peaks are probably due to an imperfect shielding from interferences that produce correlated signals.

M.Sampietro et al., Review of Sci. Instrum., Vol.70, n.5, 2520-2525 (1999)

2 possible front-ends

Choice dictated by DUT impedance to minimize residual correlations:

- low impedance DUT (< 10 k Ω) \implies voltage mode
- high impedance DUT (> $10 \text{ k}\Omega$) \implies current mode

Current scheme has practical advantages :

- DUT can be bias directly by the instrument
- DUT biasing network produces less correlated noise

Voltage scheme :

• Noise from cables are less effective

R_{cable} $V_1(t)$

Practical realisation of the instrument

Extraction of single noise from multipoles

G.Ferrari et al., Review of Sci. Instrum., Vol.75, n.12, 5367-5369 (2004)

Extraction of single noise from multipoles

In summary ...

Things to remember (1)

Noise can be an interesting «signal»

Things to remember (2)

Very small noise can be measured by using a Correlation Spectrum Technique

Things to remember (3)

Sorting a noise among many others is possible

ADDITIONAL MATERIAL

Residual correlations : current scheme

- R_F is limited by:
- dinamic range of $I_{DUT}|_{DC}$
- bandwidth
- Current noises of TIA: uncorrelated (is reduced by averaging)

 Voltage noise of TIA: partly correlated

 (is not reduced and sets the sensitivity limit)
 partly uncorrelated
 (is reduced by averaging)

Residual correlations : voltage scheme

- Current noise : correlated
- Voltage noise : uncorrelated

Suppression of the quantisation noise

Bandwidth limitations

AC coupling of the DUT – current scheme

Example: V⁺=100V instead of V_{opamp}=10 \rightarrow S_R(f)/5 \rightarrow T_m/25 !

Accuracy of the instrument

precision in the calculation of :

- the system gain
- the system frequency response